

Navigating the LOD Subclouds: Assessing Linked Open Data Quality by Domain

Gabriele Tuozzo Dipartimento di Informatica, Università degli Studi di Salerno Fisciano, Salerno, ITALY

1. Introduction

- 1,656 resources registered in The Linked Open Data Cloud (LOD Cloud) in the November 24, 2024 snapshot.
- 9 different subclouds:
 - Cross domain
 - Geography
 - Government
 - Life Sciences
 - Linguistics
 - Media
 - Publications
 - Social Networking
 - User Generated

1. Introduction

The contributions of this work are as follows:

- Examining changes in subcloud quality with respect to the pas to identify persistent trends, highlight improvements and pinpoint areas of decline.
- Providing an overview of the quality variation across different subclouds, with a focus on the **six quality categories** measured by **KGHeartBeat**.
- The analysis seeks to answer the following Research Question (RQ):

Is quality consistent across all subclouds?

2. Background - The quality framework adopted

This study builds upon the quality framework proposed by **Zaveri et al. [1]** and its adaptation by **Pellegrino et al. [2]**, which defines **6 quality categories**, further divided into quality dimensions:

- Accessibility, covers dimensions related to data access, authenticity, and retrieval.
- 2. Contextual, focuses on dimensions influenced by task-specific contexts.
- 3. Dataset Dynamicity, examines the currency and timeliness of published data.
- 4. *Intrinsic*, includes dimensions independent of user context
- 5. **Representational** addresses dimensions concerning the design and data presentation.
- 6. **Trust** evaluates dimensions related to trustworthiness
- [1] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and Soeren Auer. 2016. Quality assessment for linked data: A survey. Semantic Web 7, 1 (2016), 63–93. https://doi.org/10.3233/SW-150175.
- [2] Maria Angela Pellegrino, Anisa Rula, and Gabriele Tuozzo. 2024. KGHeartBeat: An Open Source Tool for Periodically Evaluating the Quality of Knowledge Graphs. In International Semantic Web Conference. Springer, 40–58. https://doi.org/10.1007/978-3-031-77847-6_3

Ref.

State of the LOD cloud [3]

Schmachtenberg et al. [4]

Debattista et al. [5]

Assaf et al. [6]

Debattista et al. [7]

Yamamoto et al. [8]

Maillot et al. [9]

Delgado et al. [10]

Candela et al.[11]

di Buono et al. [12]

Esposito et al.[13]

This

Analysis back to...

2011

2014

2015

2016

2018

2018

2020-2021

2021

2022

2022

2024

2024

Focus

All subclouds (x7)

All subclouds (x8)

LOD Cloud

LOD Cloud

LOD Cloud

Life sciences

LOD Cloud

Cultural Heritage

Cultural Heritage

Linguistic

Linguistic

All subclouds (x9)

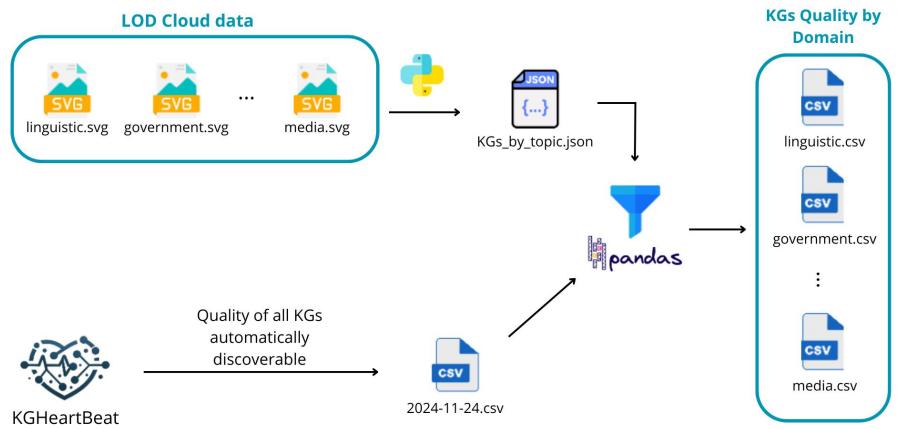
Quality Categories

D

R

/

С

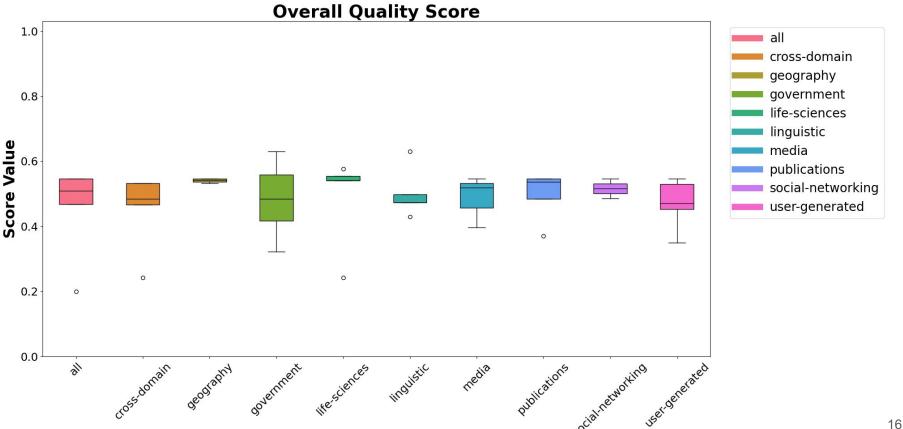

/

1

Α

1

3. Methodology


4. How have subclouds evolved over time?

Domain	Machine-Readable License			VoID file availability			
	[3]	[4]	This	[3]	[4]	This	
Life-sciences	2.44%	3.61%	24.72%	7.32%	36.14%	1.38%	
Media	16.00%	5.41%	64.86%	20.00%	0.09%	8.10%	
User gen.content	20.00%	10.42%	76.39%	25.00%	11.76%	1.28%	
Government	14.29%	30.05%	48.72%	42.86%	42.08%	2.56%	
Cross-domain	19.51%	9.76%	66.27%	21.95%	12.20%	9.63%	
Geographic	29.03%	0.00%	68.09%	38.71%	38.10%	8.51%	
Publications	10.34%	4.17%	48.99%	44.83%	13.54%	4.02%	
Social networking	-	5.38%	8.25%	-	0.96%	1.03%	
Linguistic	-	-	81.53%	-	-	7.63%	
Total	14.58%	9.96%	49.19%	32.20%	14.69%	4.03%	

4. How have subclouds evolved over time?

Domain	SPARQL endpoint			Data Dump		
	[3]	[4]	This	[3]	[4]	This
Life-sciences	-	24.10%	11.66%	-	15.66%	15.00%
Media	-	0.00%	8.10%	-	4.55%	29.72%
User gen.content	-	6.25%	6.94%	-	2.08%	19.33%
Government	-	31.15%	10.25%	-	31.15%	15.38%
Cross-domain	-	4.88%	18.07%	-	4.88%	28.91%
Geographic	-	14.29%	8.51%	-	19.05%	25.53%
Publications	-	12.50%	8.72%	-	4.17%	18.79%
Social networking	-	0.77%	2.06%	-	0.19%	5.15%
Linguistic	-	-	13.65%	-	-	56.22%
Total	68.14%	9.96%	10.70%	39.66%	8.19%	24.67%

4. Holistic Quality Assessment of SubClouds

4. Holistic Quality Assessment of SubClouds

- Accessibility: Publications is the top performer due to high score in the Availability dimension; Government shows low median values and minimal variability.
- Contextual: Overall quality is low; Geography and Government perform slightly better, but this is the least maintained category.
- **Dataset Dynamicity**: Government shows slightly better performance than the entire LOD Cloud average. Media and Cross domain perform poorly due to the lack of update frequency metadata.
- Intrinsic: Geography, Life Sciences, and Media score above the entire LOD Cloud average. Geography leads in Accuracy, while Life Sciences excels in Conciseness. Social Networking performs worst.

4. Holistic Quality Assessment of SubClouds

- Representational: Linguistics leads in Versatility and Interpretability. User Generated ranks lowest, mainly due to poor Versatility.
- Trust: Media, Publications, and Government show the best *Believability* scores. User Generated performs worst, with very low *Verifiability* and *Believability*.

5. Discussion

Shift in Data Access Trends:

- While SPARQL endpoint availability remains a concern since 2014 [4], data dump availability has notably increased.
- Contrary to earlier findings, more dataset now offer data dumps than SPARQL endpoints, as also confirmed by Debattista et al. [7].

Licensing improvements:

The license metric has shown significant improvement compared to previous assessments

Metadata Effort and Decline:

 The Government and Publications domains initially invested heavily in metadata (VoID files), but struggled to sustain this effort by 2024.

6. Conclusion

- Quality varies notably by subcloud (RQ), no subcloud excels across all quality dimensions.
- Life Sciences, Government, and Geography maintain consistently good quality across most categories.
- User Generated, Social Networking, and Cross domain are the lowest performers.
- As the data within the dataset becomes more heterogeneous, the overall quality tends to decrease, while the domain-specific focus enables higher quality through targeted curation.
- Therefore, quality improvement efforts must be tailored to each domain, as domain-specific factors play a crucial role and uniform strategies are unlikely to be effective.

6. Limitations and Future Works

Limitations:

- This study focuses on LOD Cloud subclouds, excluding dataset from other aggregators (e.g. DataHub, Zenodo, GitHub).
- Unlabeled dataset in the LOD Cloud are not considered.

Future works:

- Developing methods to improve subcloud quality.
- Proposing interactive tools to support diverse communities in curating heterogeneous data.
- Creating domain-specific best practices and tailored manuals to guide the dataset development and enhance standardization.

6. References

- [1] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and Soeren Auer. 2016. Quality assessment for linked data: A survey. Semantic Web 7, 1 (2016), 63–93. https://doi.org/10.3233/SW-150175.
- [2] Maria Angela Pellegrino, Anisa Rula, and Gabriele Tuozzo. 2024. KGHeartBeat: An Open Source Tool for Periodically Evaluating the Quality of Knowledge Graphs. In International Semantic Web Conference. https://doi.org/10.1007/978-3-031-77847-6_3
- [3] Cyganiak R. Bizer C. Jentzsch, A. 2011. State of the LOD cloud (September 2011). https://web.archive.org/web/20160323120153/lod-cloud.net/state/#structure.
- [4] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. 2014. Adoption of the linked data best practices in different topical domains. (ISWC). https://doi.org/10.1007/978-3-319-11964-9_16
- [5] Jeremy Debattista, Sören Auer, and Christoph Lange. 2016. Luzzu—a methodology and framework for linked data quality assessment. Journal of Data and Information Quality (JDIQ) 2016. https://doi.org/10.1145/2992786
- [6] Ahmad Assaf, Aline Senart, and Raphaël Troncy. 2016. Towards an objective assessment framework for linked data quality: Enriching dataset profiles with quality indicators. (IJSWIS) 12, 3 (2016), 111–133. https://doi.org/10.4018/978-1-5225-5191-1.ch021
- [7] Jeremy Debattista, Judie Attard, Rob Brennan, and Declan O'Sullivan. 2019. Is the LOD cloud at risk of becoming a museum for datasets? Looking ahead towards a fully collaborative and sustainable LOD cloud. In Companion Proceedings of The 2019 World Wide Web Conference. 850–858. https://doi.org/10.1145/3308560.33170

6. References

[8] Yasunori Yamamoto, Atsuko Yamaguchi, and Andrea Splendiani. 2018. YummyData: providing high-quality open life science data. Database 2018 (2018). https://doi.org/10.1093/database/bay022

[9] Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, and Franck Michel. 2023. IndeGx: A model and a framework for indexing RDF knowledge graphs with SPARQL-based test suits. Journal of Web Semantics 76 (2023). https://doi.org/10.1016/j.websem.2023.100775

[10] Yusniel Hidalgo-Delgado, Yoan A López, Juan Pedro Febles Rodríguez, and Amed Leiva Mederos. 2021. Quality assessment of library linked data: a case study. In Iberoamerican Knowledge Graphs and Semantic Web Conference. https://doi.org/10.1007/978-3-030-91305-2 8

[11] Gustavo Candela, Pilar Escobar, Rafael C Carrasco, and Manuel Marco-Such. 2022. Evaluating the quality of linked open data in digital libraries. Journal of Information Science 48, 1 (2022), 21–43. https://doi.org/10.1177/01655515209309

[12] Maria Pia di Buono, Hugo Gonçalo Oliveira, Verginica Barbu Mititelu, Blerina Spahiu, and Gennaro Nolano. 2022. Paving the way for enriched metadata of linguistic linked data. Semantic Web 13, 6 (2022), 1133–1157. https://doi.org/10.3233/SW-222994

[13] Pasquale Esposito, Maria Angela Pellegrino, Vittorio Scarano, and Gabriele Tuozzo. 2024. The Linguistic Linked Open Data Cloud: Phenomenal Cosmic Powers... Itty Bitty Quality Space!. In Proceedings of the ISWC 2024 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 23nd ISWC, Vol. 3828. CEUR-WS.org. https://ceur-ws.org/Vol-3828/paper24.pdf

Thank you for your attention!

Any questions?

gtuozzo@unisa.it