
CRICOS code 00025B

Are Large Language Models Good 

Data Preprocessors?

ACM WWW’25 Workshop 

Presenter: Elyas Meguellati

Co-authors:

Nardiena Pratama, Shazia Sadiq, Gianluca Demartini 



• High-quality text data is crucial for context dependent tasks

• Image captioning models (BLIP, GIT) often produce noisy captions

• Rule-based cleaning struggles with diverse errors

          Question: 

    Can LLMs reliably clean and improve noisy text?

Motivation and Problem
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Scope
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• Aim: Investigating LLMs effectiveness in cleaning  text from image captioning 

models

• Dataset: Multi-label persuasion in memes (SemEval 2024 Task)

• Metric: Heirarchical F1 (order matters)

• LLMs: LLaMA 3.1 70B, GPT-4 Turbo, Sonnet 3.5 v2

Blip: a horse with its mouth open
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A more realistic output...
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LLMs output:

But ...

why are they different?

Which method is better?
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Coverage statistics:

GPT: conservative

LLaMA: loose

Sonnet: moderate
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Experimental Setup:

Data: 

Meme text, Meme Caption, Meme Caption Cleaned

Downstream model: 

Google T5 (seq2seq, suits hierarchical labels).    ADD EXAMPLE meme

Baseline: 

meme text only

Comparisons: 

uncleaned vs llm-cleaned captions
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Results:

Blip GIT



Insights 

• Only one comparison showed a stat significant improvement

• GPT-4 is stricter (discards more, but cleaning more effectively)

• LLaMA retains most captions but may be permissive

• LLMs can modestly improve text quality for complex tasks

• Effect varies by LLM and source of noise

LLM-based Semantic Augmentation for Harmful Content Detection https://arxiv.org/abs/2504.15548
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Is it Worth it?
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